Lets look at how transformation matrices of a linear mapping $T: V \to W$ change if we change the bases in $V$ and W.
Example:
1&2&-1&0 \\
1&0&0&1
\end{bmatrix}$
Consider two ordered bases of $V$
$B= ( b_1,b_2,......,b_n)$
$\tilde{B}=( \tilde{b_1},\tilde{b_2},......,\tilde{b_n})$
Consider two ordered bases of W
$C= ( c_1,c_2,......,c_n)$
$\tilde{C}=( \tilde{c_1},\tilde{c_2},......,\tilde{c_m})$
Let $A\in \mathbb{R}^{m \times n}$ be the transformation matrix from $V \to W $ with respect to basic $B$ and $C$ and $\tilde{A}\in \mathbb{R}^{m \times n}$ be the transformation matrix from $V \to W$ with respect to basis $\tilde{B}$ and $\tilde{C}$.
We will find out how $A$ and $\tilde{A}$ are related ie; how we can transform $A$ to $\tilde{A}$.
The transformation matrix $\tilde{A}=T^{-1} A S $
Here $S \in \mathbb{R}^{n \times n}$ is the transformation matrix that maps coordinates with respect to $\tilde{B}$ into coordinates with respect to $B$ and $T \in \mathbb{R}^{m \times m}$ is the transformation matrix that maps coordinates with respect to $\tilde{C}$ into coordinates with respect to $C$.
Lets consider a transformation matrix with respect to the standard basis(B)
$A=\displaystyle \left[\begin{matrix}1 & 2\\2 & 1\end{matrix}\right]$If we define a new basis in $\mathbb{R}^2$
$S=\displaystyle \left[\begin{matrix}1 & 1\\1 & -1\end{matrix}\right]$Then any vector in the new basis can be transformed with a new transformation matrix which is easier to work $\tilde{A}=S^{-1}AS$
$\tilde{A}= \left[\begin{matrix}-1 & -1\\-1 & 1\end{matrix}\right] \left[\begin{matrix}1 & 2\\2 & 1\end{matrix}\right] \left[\begin{matrix}1 & 1\\1 & -1\end{matrix}\right] = \left[\begin{matrix}3 & 0\\0 & 1\end{matrix}\right]$
It is noted that we obtain a diagonal matrix which is easier to work than the original transformation matrix.
import numpy as np
B=np.array([[1,1],[1,-1]])
A=np.array([[2,1],[1,2]])
Ab=np.linalg.inv(B).dot(A.dot(B))
print("new transformation matrix in base B")
print(Ab)
o/p
new transformation matrix in base B [[3. 0.]
[0. 1.]]
import numpy as np
Bn=np.array([[1,0,1],[1,1,0],[0,1,1]])
Cn=np.array([[1,1,0,1],[1,0,1,0],[0,1,1,0],[0,0,0,1]])
A=np.array([[1,2,0],[-1,1,3],[3,7,1],[-1,2,4]])
print("Tranformation Matrix A defined in stardard basis")
print(A)
S=Bn
T=Cn
print("New Basis")
print(S)
print(T)
print("Tranformation matrix in New basis is")
An=A.dot(S)
An=np.linalg.inv(T).dot(An)
print(An)
o/p
Transformation Matrix A defined in standard basis [[ 1 2 0] [-1 1 3] [ 3 7 1] [-1 2 4]] New Basis-S
[[1 0 1] [1 1 0] [0 1 1]]
New Basis-T[[1 1 0 1] [1 0 1 0] [0 1 1 0] [0 0 0 1]] Transformation matrix in New basis is [[-4. -4. -2.] [ 6. 0. 0.] [ 4. 8. 4.] [ 1. 6. 3.]]
Example:
Given the linear transformation $T(x,y,z,w)=(x+2y-z,x+w)$.Find the matrix representation of the above transformation. Find the matrix representation with respect to the bases $B_1=\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)\}$ for $\mathbb{R}^4$ and $B_2=\{(1,1),(1,0)\}$ for $\mathbb{R}^2$
Transformation matrix in standard basis
$A=\begin{bmatrix}1&2&-1&0 \\
1&0&0&1
\end{bmatrix}$
New Basis transformation matrix
$S=\begin{bmatrix}
1&1&1&1 \\
0&1&1&1\\
0&0&1&1\\
0&0&0&1
\end{bmatrix}$
1&1&1&1 \\
0&1&1&1\\
0&0&1&1\\
0&0&0&1
\end{bmatrix}$
New Basis transformation matrix
$T=\begin{bmatrix}
1&1 \\
1&0\\
\end{bmatrix}$
Inverse of $T$ is
$T=\begin{bmatrix}
0&1 \\
1&-1\\
\end{bmatrix}$
1&-1\\
\end{bmatrix} \begin{bmatrix}
1&2&-1&0 \\
1&0&0&1
\end{bmatrix}\begin{bmatrix}
1&1&1&1 \\
0&1&1&1\\
0&0&1&1\\
0&0&0&1
\end{bmatrix}$
$\tilde{A}=\begin{bmatrix}
1&1&1&2 \\
0&2&1&0
\end{bmatrix}$
1&1 \\
1&0\\
\end{bmatrix}$
Inverse of $T$ is
$T=\begin{bmatrix}
0&1 \\
1&-1\\
\end{bmatrix}$
So the transformation matrix in new basis is $\tilde{A}=T^{-1} A S $
$\tilde{A}=\begin{bmatrix}0&1 \\1&-1\\
\end{bmatrix} \begin{bmatrix}
1&2&-1&0 \\
1&0&0&1
\end{bmatrix}\begin{bmatrix}
1&1&1&1 \\
0&1&1&1\\
0&0&1&1\\
0&0&0&1
\end{bmatrix}$
1&1&1&2 \\
0&2&1&0
\end{bmatrix}$
Comments
Post a Comment