Introduction
Linear Algebra in Machine Learning
Module I- Linear Algebra
1.Geometry of Linear Equations(video-Gilbert Strang)
2.Elimination with Matrices(video-Gilbert Strang)
4.Row Echelon form and Reduced Row Echelon Form-Python Code
6. Practice problems Gauss Elimination ( contact)
More Example Problems ( contact)
Module-II -Analytic Geometry and Matrix Decomposition
9.Projection onto subspace ( video)
*Practice Problems ( contact)
Module III -Vector Calculus
4.Practice Problems ( contact)
14.Practice Problems ( contact)
Module IV- Probability and Distributions
Module V- Optimization
Comments
Post a Comment