The gradient $\triangledown f$ of a function $f$ is often used for a locally linear approximation of $f$ around $x_0$.
$\frac{D_{x,y}^1f(1,2)}{1!}\delta=\left[6 \quad 14 \right]\begin{bmatrix}
x-1\\
y-2\end{bmatrix}=6(x-1)+14(y-2)$
2 & 2\\
2& 12
\end{bmatrix} \in \mathbb{R}^{2 \times 2}$
x-1 & y-2
\end{bmatrix}\begin{bmatrix}
2 & 2\\
2& 12
\end{bmatrix} \begin{bmatrix}
x-1\\
y-2
\end{bmatrix}$
$D^3_{x,y}f[:,:,1]=\frac{\partial H}{\partial x}=\begin{bmatrix}
\frac{\partial ^3f}{\partial x^3} & \frac{\partial ^3f}{\partial x^2 \partial y}\\
\frac{\partial ^3f}{\partial x \partial y \partial x}& \frac{\partial ^3f}{\partial x\partial y^2}
\end{bmatrix}$
$D^3_{x,y}f[:,:,2]=\frac{\partial H}{\partial y}=\begin{bmatrix}
\frac{\partial ^3f}{\partial y \partial x^2} & \frac{\partial ^3f}{\partial y \partial x \partial y}\\
\frac{\partial ^3f}{\partial y^2 \partial x}& \frac{\partial ^3f}{\partial y^3}
\end{bmatrix}$
0& 0
\end{bmatrix}$
$D^3_{x,y}f[:,:,2]=\begin{bmatrix}0 & 0\\
0& 6
\end{bmatrix}$
x\\
y\end{bmatrix}=0$
The second order partial derivatives are given by
$\frac{\partial^2 f}{\partial x^2}=e^{-(x^2+y^2)}.2x(2x.cos(xy)+y.sin(xy))-e^{(x^2+y^2)}(2.cos(xy)-2xy.sin(xy)+y^2.cos(xy))$
-2 & 0\\
0 & -2
\end{bmatrix}\begin{bmatrix}x\\
y\end{bmatrix}=-x^2-y^2$
Find the linear approximation to the function $f(x,y) = 2 - sin(-x -3y)$ at the point (0 , π), and then use your answer to estimate $f(0.001 , π)$.
x\\
y-\pi\end{bmatrix}=-x-3y+3\pi$
Linear approximation at $(0,\pi)$ is
$f(0,\pi)+\frac{D_{x,y}^1f(0,0)}{1!}\delta$
Find the second order Taylor series expansion for $f(x, y) = (x + y)^2$ about $(0 , 0)$
\begin{bmatrix}
x\\
y
\end{bmatrix}=0$
2 & 2\\
2 & 2
\end{bmatrix}\begin{bmatrix}x\\
y\end{bmatrix}=x^2+2xy+y^2$
\begin{bmatrix}
x-1\\
y-1
\end{bmatrix}=4x+5y-9$
$\frac{D_{x,y}^2f(1,1)}{2!}\delta^2=\frac{1}{2}\left[x-1 \quad y-1 \right]\begin{bmatrix}
2 & 2\\
2 & 6
\end{bmatrix}
\begin{bmatrix}
x-1\\
y-1\end{bmatrix}=x^2+3y^2-4x-8y+2xy+6$
\begin{bmatrix}
x-1\\
y+2
\end{bmatrix}=-4x+4y+12$
$\frac{D_{x,y}^2f(1,-2)}{2!}\delta^2=\frac{1}{2}\left[x-1 \quad y+2 \right]\begin{bmatrix}
-4 & 2\\
2 & 0
\end{bmatrix}
\begin{bmatrix}
x-1\\
y+2\end{bmatrix}=-2x^2+12x-3y+4xy-8$
$f(x) \approx f(x_0)+(\bigtriangledown_xf)(x_0)(x-x_0)$
Here $(\bigtriangledown_xf)(x_0)$ is the gradient of $f$ with respect to $x$, evaluated at $x_0$.
The following Figure illustrates the linear approximation of a function $f$ at an input $x_0$. The original function is approximated by a straight line.This approximation is locally accurate, but the farther we move away from $x_0$, the worse the approximation gets.This is a special case of multivariate Taylor series expansion of $f$ at $x_0$, where we consider only the first two terms.
Multivariate Taylor Series: Definition
We consider a function
$f:\mathbb{R}^D \to \mathbb{R}$
$x \to f(x), \quad x \in \mathbb{R}^D$
that is smooth at $x_0$. When we define the difference vector $\delta= x- x_0$, the multivariate Taylor series of $f$ at $x_0$ is defined as
$f(x)=\sum_{k=0}^{\infty } \frac{D_x^kf(x_0)}{k!} \delta^k$
where $D^k_xf(x_0)$ is the $k-th$ derivative of $f$ with respect to $x$, evaluated at $x_0$.
Taylor Polynomial: Definition
The Taylor polynomial of degree $n$ of $f$ at $x_0$ contains the first $n+1$ components of the Taylor series and is defined as
$T_n(x)=\sum_{k=0}^{n } \frac{D_x^kf(x_0)}{k!} \delta^k$
Note that both $D_x^kf$ and $\delta^k$ are $k-th$ order tensors.i.e., $k$ dimensional arrays. The $k$th order tensor $\delta^k \in \mathbb{R}^{D \times D \times \ldots \times D}$ is obtained as a $k$ fold outer product denoted by $\bigotimes$, of the vector $\delta \in \mathbb{R}^D$. For example
$\delta^2=\delta \bigotimes \delta=\delta \delta^T,\quad \delta^2[i,j]=\delta[i][\delta[j]$
In general we obtain the terms
$D_x^kf(x_0)\delta^k=\sum_{i_1=1}^D\cdots\sum_{i_k=1}^DD_x^kf(x_0)[i_1,\ldots,i_k]\delta[i_1]\cdots\delta[i_k]$
Lets write down the first few terms of $D_x^kf(x_0)\delta^k$ of the Taylor Series expansion for $k=0,\ldots,3$ and $\delta=x-x_0$.
Example: ( university question)
Consider the function $f(x,y)=x^2+2xy+y^3$. Find the Taylor series expansion of $f$ at $(x_0,y_0)=(1,2)$
Note that we are looking for a Taylor series expansion, which itself is a linear combination of Polynomials.To express the polynomial of degree 3 , the Taylor series expansion must contain terms of 4th or higher order.
$f(1,2)=13$
$\frac{\partial f}{\partial x}=2x+2y=\frac{\partial f}{\partial x}(1,2)=6$
$\frac{\partial f}{\partial y}=2x+3y^2=\frac{\partial f}{\partial y}(1,2)=14$
Therefore we obtain
$D_{x,y}^1f(1,2)=\bigtriangledown_{x,y}f(1,2)=\left[ \frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right]=[6 \quad 14] \in \mathbb{R}^{1 \times 2}$
x-1\\
y-2\end{bmatrix}=6(x-1)+14(y-2)$
Note that this contains only linear terms.i.e., first-order polynomials.
The second order partial derivatives are given by
$\frac{\partial^2 f}{\partial x^2}=2 \Rightarrow \frac{\partial^2 f}{\partial x^2}(1,2)=2$
$\frac{\partial^2 f}{\partial y^2}=6y \Rightarrow \frac{\partial^2 f}{\partial y^2}(1,2)=12$
$\frac{\partial^2 f}{\partial y \partial x}=2 \Rightarrow \frac{\partial^2 f}{\partial y \partial x}(1,2)=2$
$\frac{\partial^2 f}{\partial x \partial y}=2 \Rightarrow \frac{\partial^2 f}{\partial x \partial y}(1,2)=2$
$H=\begin{bmatrix}
2 & 2\\
2& 6y
\end{bmatrix} \in \mathbb{R}^{2 \times 2}$
2 & 2\\
2& 6y
\end{bmatrix} \in \mathbb{R}^{2 \times 2}$
So the Hessian at $(1,2)$ is
$H(1,2)=\begin{bmatrix}2 & 2\\
2& 12
\end{bmatrix} \in \mathbb{R}^{2 \times 2}$
Therefore the next term of the Taylor series expansion is given by
$\frac{D_{x,y}^2f(1,2)}{2!}\delta^2=\frac{1}{2}\delta^TH(1,2)\delta$
$\quad=\frac{1}{2}\begin{bmatrix}x-1 & y-2
\end{bmatrix}\begin{bmatrix}
2 & 2\\
2& 12
\end{bmatrix} \begin{bmatrix}
x-1\\
y-2
\end{bmatrix}$
$=(x-1)^2+2(x-1)(y-2)+6(y-2)^2$
This is a second order polynomial
The third order derivatives are obtained as
$D^3_{x,y}f=\left[ \frac{\partial H}{\partial x}\quad \frac{\partial H}{\partial y}\right] \in \mathbb{R}^{2 \times 2 \times 2}$
\frac{\partial ^3f}{\partial x^3} & \frac{\partial ^3f}{\partial x^2 \partial y}\\
\frac{\partial ^3f}{\partial x \partial y \partial x}& \frac{\partial ^3f}{\partial x\partial y^2}
\end{bmatrix}$
$D^3_{x,y}f[:,:,2]=\frac{\partial H}{\partial y}=\begin{bmatrix}
\frac{\partial ^3f}{\partial y \partial x^2} & \frac{\partial ^3f}{\partial y \partial x \partial y}\\
\frac{\partial ^3f}{\partial y^2 \partial x}& \frac{\partial ^3f}{\partial y^3}
\end{bmatrix}$
Since most of the terms are constant in second order Hessian, the only non zero third order partial derivative is
$\frac{\partial ^3f}{\partial y^3} =6 \Rightarrow \frac{\partial ^3f}{\partial y^3}(1,2)=6$All other derivatives will vanish
$D^3_{x,y}f[:,:,1]=\begin{bmatrix}0 & 0\\0& 0
\end{bmatrix}$
$D^3_{x,y}f[:,:,2]=\begin{bmatrix}0 & 0\\
0& 6
\end{bmatrix}$
$\frac{D^3_{x,y}f(1,2)}{3!}\delta^3=(y-2)^3$
Overall, the exact Taylor series expansion of $f$ at $(x_0,y_0)=(1,2)$ is
$f(x,y)=f(1,2)+D^1_{x,y}f(1,2)\delta+\frac{D^2_{x,y}f(1,2)}{2!}\delta^2+\frac{D^3_{x,y}f(1,2)}{3!}\delta^3$
$=13+6(x-1)+14(y-2)+(x-1)^2+2(x-1)(y-2)+6(y-2)^2+(y-2)^3 $
$=13+6x-6+14y-28+x^2+1-2x+2xy-4x-2y+4+6y^2+24-24y+y^3-8+12y-6y^2 $
$=x^2+2xy+y^3+(6x-6x)+(14y-2y-24y+12y)+(13-6-28+1+4+24-8)$
$=x^2+2xy+y^3$
Find the second order Taylor series expansion for $f(x,y) = e^{-(x^2+y^2)} cos(xy)$ about $(0 , 0)$.
$f(0,0)=1$
First order partial derivatives
$\frac{\partial f}{\partial x}=-2xe^{-(x^2+y^2)}cos(xy)-ye^{-(x^2+y^2)}sin(xy)$
$\frac{\partial f}{\partial x}=-e^{-(x^2+y^2)}(2x.cos(xy)+y.sin(xy))$
$\frac{\partial f}{\partial x}(0,0)=0$
$\frac{\partial f}{\partial y}=-2ye^{-(x^2+y^2)}cos(xy)-xe^{-(x^2+y^2)}sin(xy)$
$\frac{\partial f}{\partial y}=-e^{-(x^2+y^2)}(2y.cos(xy)+x.sin(xy))$
$\frac{\partial f}{\partial y}(0,0)=0$
$D_{x,y}^1f(0,0)=\bigtriangledown_{x,y}f(0,0)=\left[ \frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right]=[0 \quad 0] \in \mathbb{R}^{1 \times 2}$
$\frac{D_{x,y}^1f(0,0)}{1!}\delta=\left[0 \quad 0 \right]\begin{bmatrix}x\\
y\end{bmatrix}=0$
$\frac{\partial^2 f}{\partial x^2}=e^{-(x^2+y^2)}.2x(2x.cos(xy)+y.sin(xy))-e^{(x^2+y^2)}(2.cos(xy)-2xy.sin(xy)+y^2.cos(xy))$
$\frac{\partial^2 f}{\partial x^2}=e^{-(x^2+y^2)}((4x^2-y^2-2)cos(xy)+4xy.sin(xy))$
$\frac{\partial^2 f}{\partial x^2}(0,0)=-2$
similarly
$\frac{\partial^2 f}{\partial y^2}=e^{-(x^2+y^2)}((4xy.sin(xy)-(x^2-4y^2+2)cos(xy))$
$\frac{\partial^2 f}{\partial y^2}(0,0)=-2$
$\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial^2 f}{\partial y \partial x}=e^{-(x^2+y^2)}((2x^2+2y^2-1)sin(xy)+3xy.cos(xy))$
$\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial^2 f}{\partial y \partial x}(0,0)=0$
$\frac{D_{x,y}^2f(0,0)}{2!}\delta^2=\frac{1}{2}\left[x \quad y \right]\begin{bmatrix}-2 & 0\\
0 & -2
\end{bmatrix}\begin{bmatrix}x\\
y\end{bmatrix}=-x^2-y^2$
the second degree Taylor polynomial at point (0,0) is
$f(0,0)+\frac{D_{x,y}^1f(0,0)}{1!}\delta+\frac{D_{x,y}^2f(0,0)}{2!}\delta^2$
$=1+0-x^2-y^2$
$=1-x^2-y^2$
$f(0,\pi)=2-sin(0-3\pi)=2+sin(3\pi)=2$
First order partial derivatives
$\frac{\partial f}{\partial x}=cos(-x-3y)$
$\frac{\partial f}{\partial x}(0,\pi)=cos(-3\pi)=-1$
$\frac{\partial f}{\partial y}=3cos(-x-3y)$
$\frac{\partial f}{\partial y}(0,\pi)=3.cos(-3\pi)=-3$
$\frac{D_{x,y}^1f(0,0)}{1!}\delta=\left[-1\quad -3 \right]\begin{bmatrix}x\\
y-\pi\end{bmatrix}=-x-3y+3\pi$
$f(0,\pi)+\frac{D_{x,y}^1f(0,0)}{1!}\delta$
$=2-x-3y+3\pi$
value at $f(0.001 , π)$ is
$2-0.001-3\pi+3\pi$
$=1.999$
$f(0,0)=0$
First order partial derivatives
$\frac{\partial f}{\partial x}=2(x+y)$
$\frac{\partial f}{\partial x}(0,0)=0$
$\frac{\partial f}{\partial y}=2(x+y)$
$\frac{\partial f}{\partial y}(0,0)=0$
$\frac{D_{x,y}^1f(0,0)}{1!}\delta=\left[0 \quad 0 \right]\begin{bmatrix}
x\\
y
\end{bmatrix}=0$
Second order partial derivatives
$\frac{\partial^2 f}{\partial x^2}=2$
$\frac{\partial^2 f}{\partial x^2}(0,0)=2$
$\frac{\partial^2 f}{\partial y^2}=2$
$\frac{\partial^2 f}{\partial y^2}(0,0)=2$
$\frac{\partial^2 f}{\partial x \partial y}=2$
$\frac{\partial^2 f}{\partial x \partial y}(0,0)=2$
$\frac{\partial^2 f}{\partial y \partial x}=2$
$\frac{\partial^2 f}{\partial y\partial x}(0,0)=2$
$\frac{D_{x,y}^2f(0,0)}{2!}\delta^2=\frac{1}{2}\left[x \quad y \right]\begin{bmatrix}2 & 2\\
2 & 2
\end{bmatrix}\begin{bmatrix}x\\
y\end{bmatrix}=x^2+2xy+y^2$
the second order Taylor series expansion about(0,0) is
$f(0,0)+\frac{D_{x,y}^1f(0,0)}{1!}\delta+\frac{D_{x,y}^2f(0,0)}{2!}\delta^2$$=0+0+x^2+2xy+y^2$
$=x^2+2xy+y^2$Compute the Taylor series expansion of $f(x,y)=x^2+2xy+y^3$ at $(x_0,y_0)=(1,1)$
$f(1,1)=4$
First order partial derivatives
$\frac{\partial f}{\partial x}=2x+2y$
$\frac{\partial f}{\partial x}(1,1)=4$
$\frac{\partial f}{\partial y}=2x+3y^2$
$\frac{\partial f}{\partial y}(1,1)=5$
$\frac{D_{x,y}^1f(1,1)}{1!}\delta=\left[4 \quad 5 \right]\begin{bmatrix}
x-1\\
y-1
\end{bmatrix}=4x+5y-9$
Second order partial derivatives
$\frac{\partial^2 f}{\partial x^2}=2$
$\frac{\partial^2 f}{\partial x^2}(1,1)=2$
$\frac{\partial^2 f}{\partial y^2}=6y$
$\frac{\partial^2 f}{\partial y^2}(1,1)=6$
$\frac{\partial^2 f}{\partial x \partial y}=2$
$\frac{\partial^2 f}{\partial x \partial y}(1,1)=2$
$\frac{\partial^2 f}{\partial y \partial x}=2$
$\frac{\partial^2 f}{\partial y\partial x}(1,1)=2$
2 & 2\\
2 & 6
\end{bmatrix}
\begin{bmatrix}
x-1\\
y-1\end{bmatrix}=x^2+3y^2-4x-8y+2xy+6$
the second order Taylor series expansion about(1,1) is
$f(1,1)+\frac{D_{x,y}^1f(1,1)}{1!}\delta+\frac{D_{x,y}^2f(1,1)}{2!}\delta^2$$=4+(4x+5y-9)+x^2+3y^2-4x-8y+2xy+6$
$=x^2+3y^2-3y+2xy+1$Compute the Taylor series expansion of $f(x,y)=x^2y+3y-2$ at $(x_0,y_0)=(1,-2)$
$f(x,y)=x^2y+3y-2$
$f(1,-2)=-10$
First order partial derivatives
$\frac{\partial f}{\partial x}=2xy$
$\frac{\partial f}{\partial x}(1,-2)=-4$
$\frac{\partial f}{\partial y}=x^2+3$
$\frac{\partial f}{\partial y}(1,-2)=4$
$\frac{D_{x,y}^1f(1,1)}{1!}\delta=\left[-4 \quad 4 \right]\begin{bmatrix}
x-1\\
y+2
\end{bmatrix}=-4x+4y+12$
Second order partial derivatives
$\frac{\partial^2 f}{\partial x^2}=2y$
$\frac{\partial^2 f}{\partial x^2}(1,-2)=-4$
$\frac{\partial^2 f}{\partial y^2}=0$
$\frac{\partial^2 f}{\partial y^2}(1,-2)=0$
$\frac{\partial^2 f}{\partial x \partial y}=2x$
$\frac{\partial^2 f}{\partial x \partial y}(1,-2)=2$
$\frac{\partial^2 f}{\partial y \partial x}=2x$
$\frac{\partial^2 f}{\partial y\partial x}(1,-2)=2$
-4 & 2\\
2 & 0
\end{bmatrix}
\begin{bmatrix}
x-1\\
y+2\end{bmatrix}=-2x^2+12x-3y+4xy-8$
the second order Taylor series expansion about(1,-2) is
$f(1,-2)+\frac{D_{x,y}^1f(1,-2)}{1!}\delta+\frac{D_{x,y}^2f(1,-2)}{2!}\delta^2$$=-10+(-4x+4y+12)-2x^2+12x-3y+4xy-8$
$=-2x^2+8x+y-6$
Comments
Post a Comment